The Spectra of Multiplicative Attribute Graphs
نویسنده
چکیده
A multiplicative attribute graph is a random graph in which vertices are represented by random words of length t in a finite alphabet Γ, and the probability of adjacency is a symmetric function Γt×Γt → [0, 1]. These graphs are a generalization of stochastic Kronecker graphs, and both classes have been shown to exhibit several useful real world properties. We establish asymptotic bounds on the spectra of the adjacency matrix and the normalized Laplacian matrix for these two families of graphs under certain mild conditions. As an application we examine various properties of the stochastic Kronecker graph and the multiplicative attribute graph, including the diameter, clustering coefficient, chromatic number, and bounds on low-congestion routing.
منابع مشابه
Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملOn multiplicative Zagreb indices of graphs
Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1 G and ( ) 2 G , under the name first and second multiplicative Zagreb index, respectively. These are define as ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...
متن کاملZagreb, multiplicative Zagreb Indices and Coindices of graphs
Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...
متن کاملOn strongly 2-multiplicative graphs
In this paper we obtain an upper bound and also a lower bound for maximum edges of strongly 2 multiplicative graphs of order n. Also we prove that triangular ladder the graph obtained by duplication of an arbitrary edge by a new vertex in path and the graphobtained by duplicating all vertices by new edges in a path and some other graphs are strongly 2 multiplicative
متن کاملThe ratio and product of the multiplicative Zagreb indices
The first multiplicative Zagreb index $Pi_1(G)$ is equal to the product of squares of the degree of the vertices and the second multiplicative Zagreb index $Pi_2(G)$ is equal to the product of the products of the degree of pairs of adjacent vertices of the underlying molecular graphs $G$. Also, the multiplicative sum Zagreb index $Pi_3(G)$ is equal to the product of the sum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012